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FOREWORD

This program was performed as part of the development of a Fluidic
Event Sequencing Subsystem (FESS) for an Aircrew Escape System (AES).
Funding for this effort was provided by the Naval Ordnance Station,
Indian Head, Maryland under the Work Request Number NOO17478WR80223.
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The authors wish to thank K. L. Englander and M. A. Henderson, CAD/PAD
. Department, Naval Ordnance Station, Indian Head, Maryland for their advice
o T and continuing interest in this project.
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INTRODUCTION

The Naval Surface Weapons Center was tasked by NAVORDSTA to develop
2 cool gas generator to serve as a power supply for a fluidic event
sequencing subsystem (FESS). This fluidic subsystem, fn turn, would be
used for sequencing and inftiation in Aircrew Escape Systems. The operational
parameters that must be met by this gas generator ars the following:

' ' 1. Rise time to a steady state pressure in 25 milliseconds.

2. Sustained output pressure of 5.4 MPa (800 psi) # 15% for 5 sec %
10% across the temperature range of ~53,99C (-659F) to +93.30C (+200°F).

- 3. A mass flow rate of 3.2 grams/sec hydrogen (35.8 liters/sec @ STP).

4. Particulate size in the ocutput gas shall not exceed five microns,
with one micron 1imit desired.

5. Gas Generator output temperature not to exceed 1509C (302°F) and
should be less 1f possible.

BACKGROUND

Gases can be stored in high pressure cylinders as cryogenic liquids,
or in solid form. Storage of hydrogen in 1iquid or
solid form is attractive, because a high volume density can be achieved.
However, among the vast number of existing hydrogen containing compounds, only
a few exist, which are suitable for hydrogen generation. The many attempts
to develop sol1d hydrogen generators are discussed in references 1 through 7,

The release of chemically bonded or physically absorbed hydrogen requires
energy which must be supplied by an external energy source or generated by
chemical reactions among the storage matrix ingredients. Within the first
1 category, requiring supply of external energy, fall compounds which can be
4 ] electrolyzed,such as water, or thermally decomposed, such as hydrazine bisborane,

: NgH4(BH3)2, or hydrazine, N2H4., The second category, based on internal
exothermic chemical reactions, can be subdivided into four groups:

'? . ) 1. Reactions of metals and metal hydrides with acids, bases, water, etc.
Reactions of hydrides with hydrates, sulfates, water, etc.

Reactions of metal hydrides with metal oxides,

H W

Reactions of mixed metal hydrides with ammonium salts.
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The mixed metal hydride/ammonium salt reactions such as NHaC1 +
LiAlH4 — L1C1 + AIN + LiH + 4H, appear to represent the best compromise

regarding thermal stability and heat of reaction. Table 1 shows a family
of reactions which have been carefully investigated over a period of 10 years
at the Naval Surface Weapons Center,

In the early beginnings of the development of concepts for storage and
production of hydrogen by chemical means, the requirement for a low temperature
gas suitable for inflation of balloon structures, favored Tow temperature
mixtures such as INH4C1/1 NaAlHa/2L1ATHg or INH4C1/2L1A1H4. These mixtures

have found application in the following programs:

A. THE SINGLE INTEGRATED SIGNAL DEVICE: A hand-deployable signalling
device, capable of rocket launching a payload, consisting uf a pear~shaped
balloon package, a 152 m (500 ft) tether and a gas generator capable of
producing 113 1iters (4 ft3) of hydrogen in 10 seconds.

. THE LAND WARFARE LABORATORY SITE MARKER BALLOON: A ground-deployed
balloon inflated with 283 1iters (10 ft3) of hydrogen from a hydrogen gas
generator.

C. THE NUSC MARKER BUOY. _ _ e e

D. THE EODF FLOATATION BAG = _ .

E. THE HEL SOLID Hp/D2

F. THE ARPA SCALE-UP PROGRAM: This program was used to develop the
technology and hardware necessary to scale-up from laboratory devels to the
point where gas generators producing several thousand 1iters of Hz could be

manufactured.

G. THE GORJE FUEL MANAGEMENT SYSTEM: This project involved developing a
segmented, cigarette burning grain utilizing the L1A1H4/NH?CT formulation.
The unit was designed to operate at a pressure of 2.7 MPa (400 psi), producing

\
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1.2 1/sec (0.042 fid/sec) of hydrogen gas for approximately 100 seconds.
The gas was used to pressurize a rubber bladder containing a 1iquid fuel,
forcing the fuel through an orifice 1nto a combustion chamber.

A wealth of technology has evolved from the development of solid hydrogen
gas generators for the programs listed above. Generators have been successfully
operated in mid-air and at simulated depths of 914 m (3000 ft) in a water
environment, As part of the SISD program, gas generators were successfully
put through many of the standard environmental and safety tests. During the
HEL program a graat deal of knowledge was gained on how various catalysts
affect the reaction. Unlike normal rocket propellant, the hydrogen gas
generator reactant burning rate is largely unaffected by pressure changes
in the gas generator., The material will burn at ambient pressures, showing
a decrease in burning rate up to 2.02 MPa (300 psi) (see Figure 1) and then
a plateau out to 54 MPA (8000 psi) (the maximum pressure at which samples
were burned).

Perhaps the only drawbacks of the NHAC1/LiATH4 formulations are its low
burning rate (0.64 to 1.27 mm/sec (0.025 to 0.050 in/sec) depending on the
catalyst and its 1imited thermal stability at elevated temperatures. The
Tow burning rate has led to gas generator designs incorporating pelletized
charges, The large surface area of the pellets allows for maximum mass-flow
without resorting to eccentric generator hardware designs. Of course, where
modest flow rates are required, standard pressed charges of neutral burning
configuration can easily be formed., The problem of temperature stability
results from the instability of the main ingredient, L1A1H4, which begins to
decompose endothermically at ~1259C(2579F), The comq]ete formulation con 1sting
of NH4Cl, L1ATHg, catalyst and binder begins to slowly outgas above 720C i161.6 F)
which 1s 11lustrated by figures 2 and 3. The outgassing at ~720C (161,69F)
is equivalent to a shelf-1ife of approximately 100 days (50% H» loss) at that
temperature. In other words, the NH4C1/L1ATHg formulation can only be used for
applications with storage temperatures below 700C (1589F).

The application of hydrogen gas generators 1n fluidic subsystems requires
a temperature stability of as high as 939¢ (2009F), This high temperature
can only be achieved by a NH4C1/NaAlH4 formulation at the expense of lower
yield and higher gas temperature. Pure NaAlHg has a decomposition temperature
of 1839C (361°F). The DTA of a NH4aC1/NaAlH4 mixture showed a
decomposition temperature or m170°% (3389F) (see Figure 4) which 1s considerably
higher than the decomposition temperature of a NH4C1/LiATHq mixture shown in
Figure 2. In addition, the NHqC1/NaAlH4 has excellent safety characteristics
as summarized in Table 2. Thus, all work on gas generator development for
fluidic systems has concentrated with the beginning of January 1979 on
exploiting the 1NH4C1/1NaAlHy reaction. Preliminary tests,prior to this date,
were conducted with a 1NH4C1/2L1ATH4 formulation.

n
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SOLID HYDROGEN GAS GENERATOR MIXTURE

- INGREDIENT PREPARATION. Preparation of the ingredients for the hydrogen
a gas generator is no more difficult than for the standard composite propellant.
' The ingredients are commercially available and can be mixed and pressed

| according to standard manufacturing technology. The ingredient costs are

' relatively high (see Table 3) compared to common propellant ingredients.

_ However, as long as the generator is not produced in large quantities, the
' ingredient costs are relatively minor compared to the manufacturing cost.

Once the ingredients are received from industry, they must be dried,
milled, sieved and weighed in preparation for mixing. All of the operations i
on the hydrides must be conducted in a moisture-free atmosphere. The atmosphere
should also be as oxygen-free as possible to decrease the risk of fire, Thus,
all manufacturing operations are conducted in "dry" boxes which continuously
flush the operating areas with nitrogen, while, at the same time, removing
water vapor and oxygen. Not only are all the solids predried, but the toluene
is also dried to remove any trapped water.

The weighed ingredients are then transferred to a Baker/Perkins 1 gallon

mixer where they are mixed remotely. Like all other operations, the mixer

is surrounded by a specially constructed "dry" box to maintain a moisture-

free environment. Mixing, generally, requires 1 1/2 to 2 hours per batch,
depending on how long it takes to completely remove the toluene solvent. Each
mix currently produces 1500 grams of reactant. The finished reactant is sealed
in cans and then readied for pressing. Mixing larger batches of reactant would
present no great problems, except that a "dry" box would have to be constructed
around the mixer. Because of this drawback, the pneumatic mixing process might
4 be the best answer for any future scale-up efforts,

PELLETIZING OF INGREDIENTS. For the fluidics application, a pelletized
configuration was selected, because of the high mass flow rate required and
- the short burn time restrictions. Pelletizing of the NH4C1/NaAlH4a formulation
§ required the same precautionary measures as used in the mixing process. Thus,
a nitrogen tent had to be built around the pelletizer before pressing operations
could commence. A standard Stokes ESD press was used for all pressing operations.
This press utilizes 15 stations for pressing with a maximum force of 10 tons.
Pellets can be produced in sizes from 3.18 mm (1/8") to 26.99 mm ( 1 1/16") 1n
diameter at rates from 180 to 335 pellets/minute. The thickness of the pellet can
be preset between 3.18 mm (1/8") and 25.4 mm and 1". The only problems
experienced in the pressing operation centered around a constant feed rate.
This problem was finally resolved by manual shaking of the feed bin. The
finished product 1s a tightly compacted pellet than cannot be broken apart
by finger pressure. The pellet size used for this program was 12.7 mm (0.500") L.
This dimension was dictated by a burning rate of 0.64 mm/sec (0.025 in/sec) measured
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with strand burning samples., Thus, if a pellet burns both ends, it should
be consumed in 5 seconds, the required burn time. The pellet size, of
course, can be modified to produce whatever flow rates or burn

times are desired.

SOLID HYDROGEN GAS GENERATOR HARDWARE

IGNITION SYSTEM. The ignition system for this generator is relatively
simple and involves only two items: (1) a small bag of BKNO3 pellets surrounding
an Atlas M100 electric match squib and (2) 101.6 mm (4") strips of heat
paper. The simplicity of the ignition system 15 due to the fact that the
NH4C1/NaATH4 mixture reacts at ambient pressure and does not require pre-
pressurization, The heat paper is used to spread heat throughout the pellet
bed to facilitate nearly simultaneous reaction of all pellets. The composition
of heat paper, manufactured by KDI Score, is proprietary, but 1t is assumed
that it consists of a thermite formulation. The heat paper itself 1s most
readily ignited by an electric match squib.

FILTER SYSTEM, The filter system consists of felt metal manufactured
by the Brunswick Corporation, The felt metal 1s available in a variety of
grades. A sequence of filters from very coarse to very fine has been found
to act as a perfect filtration column, For the flow rates tested. clogging
has not been experienced. A combination of three phenomena contributes to
the simplicity of the filtration system: (1) the high diffusivity of hydrogen,
(2) the physical properties of the solid residue and (3) the low temperature
of the hydrogen generating reaction process.

The cannister itself can be made from a variety of materials which meet
minimum requirements with respect to temperature resistance, mechanical
and chemical integrity. For the purpose of test firings, a stainless steel
prototype was used, fitted with pressure and temperature transducers (see
Figure 5). A light-weight aluminum cannister can be employed for field use.

MATERIAL COMPATIBILITY. The FESS materials may consist of metallic,
ceramic or organic materials. Some of these materials contain free and/or
combined oxygen and carbon. Theoretically, hydrogen reacts with oxygen to
form water and with carben to form hydrocarbon, but these reactions usually
require temperatures which are considerably higher than the tolerable maximum
operational temperature determined for this program. Some reductions of hydrogen
with protective oxide layers, e.g. CuQ, may occur at lower temperature, but
they would not impair the system. Another matter of concern may be hydrogen
embrittiement. However, the hydrogen must first diffuse into the metallic
materials before hydrogen embrittlement can occur. Since the diffusion
process 1s slow, system deterioration will not occur during operation time.

SAFETY HAZARDS. Hydrogen can react with oxygen (air) and form water
according to the equatfon:

Hp + 1/2 02 —> Hy0 + 68.5 kcal

13
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Therefore, some precautions are required in dealing with hydrogen gas.
Hydrogen hazards are 1isted in Table 4 together with data for methane
and gasoline (see reference 8). According to Table 4 a hydrogen/air
mixture 1s flammable within the region of 4.0 - 75.0 vol % and requires
only 0.02 mjoule for ignition. Furthermore, hydrogen/air mixtures within
the range 18.3 - 59.0 vol % may transit into a detonation, 1f the physical
dimension of the mixture exceeds the inductance distance (L/D).

PROTOTYPE TEST GENERATOR AND PERFORMANCE CHARACTERISTICS

During the course of this program, 25 breadboard gas generators were
designed and fabricated for test purposes at NSWC, Indian Head. The test
generators were designed to meet the flow requirements for the FESS power
supply. Heavy duty hardware was used in this design for safety reasons.
However, 1t should be understood that such heavy duty hardware can easily be
replaced by aluminum or other lightweight materials.

The first series of test firings were performed in early 1977 and
investigated the application of the NH4C1/LiATH4 formulation. This test series
utilfzed a standard neutral-burning grain design (tubular) consisting of a
right-cylinder 30.48 mm (1.2") in diameter with a 12.7 mm (1/2") perforation.
A1l grains tested for this program were formed from a reactant consisting
of 2L1ATH4/INH4CT + 5 Wt, % of Kraton binder +5 wt % of either NiAcAc or
Feg03 catalyst. The grains were pressed at 20.25 MPa (3000 ps:) in the mold
fabr?cated for this program, Each grain was approximately 38.1 mm (1 1/2")
in height and 30.48 mm ?1.2") in diameter., To achieve the various lengths
required, tne grains were bonded to one another with Kraton. To achieve the
flow rate required, a length of 508 mm (20") was necessary. The end of each
cylinder was also inhibited with Kraton. It was obvious that this laboratory
design was unacceptable for a full-up FESS system, but it was useful for
exagi?:gg the five requirements, and at the same time was the most economical
to build,

To achieve the rapid rise time required, two techniques were attempted.
The first and most obvious was to tie a small bag of powdered gas generator
reactant (20 g) to the electric match squib igniter. While this technique
reduced delay times, 1t did not achieve delays as low as 25 ms. Assuming
that an igniter producing non-hydrogen gaseous products is acceptable to this
program, BKNO3 was then tried. Using this approach, rise times on the order
of 100 ms were achieved, sti11 somewhat short of the 25 ms required.

The data generated in this first series of test firings are presented in
Table 5. Two different types of reactants were tested in this series, one
containing NiAcAc as the catalyst, the second containing Fep03. As can be
seen from the data, burning rates can be nearly doubled by changing catalysts.
Peak operating pressures were varied on purpose, using different nozzles or

14
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different grain 1en?ths, because we understood that the 3.38 MPa (500 psi)
pressure, as specified at that time, might be modified to 5.4 MPa (800 psi),
as 1t eventually was. Hence our desire, at this time, was to demonstrate
operational capability at a variety of pressures. Pressure~-time traces of
several firings at various pressuraes are shown in Figures 6, 7 and 8, The
gas stream temperatures, where available, were recorded just downstream

of the filter before the nozzle. The test generator is shown in Figure 5,
Gas volume and flow rate data were collected on a Collins gasometer,

From this first series of test firings, it appeared that no serious
barriers would prevent the hydrogen gas generator from meeting all five
requirements. However, two problem areas required tnvestigation.

1. Reducing the rise time to < 25 ms

2. Devising a pelletized grain design to achieve required mass fiow
rates and burn times while utilizing a practical sized cannister,

The first of these problem areas, reduced delay time, was resolved by
slightly modifying the cannister design, and by utilizing 5 g charges of
BKNO3 to rapidly pressurize the cannister. Heat paper was used to promote
rapig fgnition of all pellets in the cannister volume. As can been seen from
Table 6, ignition delay was about 25 ms for all 14 test firings.

Area 2 was resolved by pelletizing the NH4C1/NaATHg formulation discussed
earlier. One further problem, that arose during the course of these test
firings, was that of overlong burn time (7 seconds as opposed to the required
5 seconds). Strand burning experiments determined a burning rate of 0.025 in/sec
for this formulation. Thus, pellets 12.7 mm (0.500") in diameter and 0,64 mm
(0.250") thick were fabricated at pressures in excess of 33.75 MPa (5000 psi).
These pellets should have yielded burn times on the order of 5 seconds.
However, as can be seen from Table 6, the average burn time was about 7 seconds
at ambfent temperatures, meaning the actual burning rate was only 0.42 mm/sec
(0.0167 1n/sec§. This Tower rate can easily be offset in future designs by
simply decreasing the pellet thickness from 6.35 mm (0.250") to 4.24 %0.167")
to achieve the desired burn time of 5 seconds.

In addition to the 8 firings performed at ambient temgeratures. 3 firings
were made at -53.80C (-650F) and 3 firings at 93.3°C (+200°F). These firings
show a definite temperature dependency of burning rate. Hovever, performance
is acceptable in all six firings. Pressure-time traces at each temperature
are shown in Figures 9, 10 and 11. Variations in performance data frcm units
fired at the same temperature may be attributable to batch to batch variations
in both the NaAlHs used, and the actual mixes manufactured using the various
lots of NaAlHg. ﬁs described earlier, three separate mixes were required
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to collect reactants necessary for the test program. It {is logical to
assume that each of these mixes would yield a slightly different performance.
In actual usage, the batches could be blended or one large batch could be
manufactured.

RECOMMENDATIONS

It is apparent from the preceding that the hydrogen gas generator
can serve as a practical power supply for the FESS program. The five
requirements can be met, and 1f these requirements should change, the
hydrogen gas generator 1s flexible enough to meet these as well. The next
logical step would be to begin interfacing the hydrogen gas generator with
an actual fluidic system to see what problems might be encountered. Once
these problems have been surmounted, design of an actual power supply
system can be initiated.
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Table 2 Hydrogen Gas Generator Safety Data

A. 2L1ATHg/INH4C

Formulation

51 wt¥ LiATHg '
39 Wt¥ NH4C

5 wt¥% Burning rate modifier (Fe203)

Safety Tests

Sliding friction: 320 1bs (M)
Impact: 100 mm/5kg (M)
Electrostatic discharge: 0.0125 joules (M)

B. 1 NaAlH4/1NH4C1

Formulation

45,2 wt¥ NaAlHa

44,8 wt¥ NHgqCl
5 wt% Burning rate modifier (Fep03)
5 wt¥ Binder (Kraton)

Safety Tests

S1iding friction 750 1bs (L)
Impact: 275 mm/5kg (M)
Electrostatic: 0.50 joules (M)

29
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Table 3 Cost of Hydrogen Gas Generator
Ingredients (in Dollars per Pound)

Materdal Price
NHaC1 .75
LiATHg* 32,00
NaAlHg*$ 79.00
NaBHg4 13.50

*Costs are high because of low=volume production

*Estimated price for large scale production 1%
per 1b,
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Table 5 Hydrogen Gas Generator - Evaluation Test Data

o= LT 4 e -

: Charge Ignitor Charge Nozzle Ignition !
| No. Catalyst Weight Weight Length Diameter Dela
| (g) (93 (mm) (mm) (sec
1 Ni AcAc 88 5 155.7 1.78 1.4
3 [ | 2 Ni AcAc 86 8 152.4  1.78 1.2
3 Ni AcAc 63 10 106.7 0.79 1.0
4 Ni AcAc 54 15 9%.5  0.79 0.27
| 5 Ni AcAc 108 20 180.3 2,92 0.10
| 6 Fe203 90 20 152.4  0.79 0.20
; 7 Fep03 9 20 152.4  0.79 0.20
8 Ni AcAc 270 20 457.2  2.92 0.20
| 9 N1 AcAc 301 20 508.0  6.22 0.10
|| 10 Fe203 298 20 762.0 1.78 0.10
o N Ni AcAe &7 7 154.9  1.78 0.10
Pt [
X } Maximum Burn Max{mum Total Flow Burning
{ No. Pressure Time Temperature Gas Volume Rate Rate
) (MPa) (sec) (oc) (11ters) (g/sec) (mm/sec)
1 4.83 5.0 NA 90.7 1.1 1.40
y 2 4,98 3.9 NA 98.8 1.15 1.32
- 3 5.02 4.6 113.3 43.2 0.85 1.07
o 4 5.73 4.6 127.2 43,5 0.90 1.09
v 5 3.51 4,1 NA 113.0 1.5 1.22
g | 6 2.44 12.3 81.7 91.6 0.66 0.53
! 7 2.7 13.0 10 91 0.65 0.53
| 8 2.78 5.9 96.1 NA 4,20 NA
. 9 0.79 5.9 63.3 NA 4.2 NA
10 4,07 1.9 62.3 NA 2.44 NA
n 3.75 3.5 NA 86.1 1.23 1.37 -
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Table 6 Hydrogen Gas Generator - Temperature Qualification Test Data

No. NeToht  Wolght  Dlanster  befay’  Tevsaemsnecr :
- () (a9 (m) (nsec (oc) -
i E 1 250 5 0.762 25 Ambient (25) !
2 250 5 1.19 25 25 3
L 3 250 5 1.78 25 25 ;
a8 4 250 5 1.78 25 25 ,
E' ] 5 250 5 1.78 25 25 !
g i 6 250 5 1.78 25 -53.9
E 7 250 5 1.78 25 -53.9
f 8 250 5 1.78 25 -53.9 »
| 9. 250 5 1.78 25 93.3 ]
1 10 250 5 1.78 25 93.3 3,
’ n 250 5 1.78 25 93.3
. 12 250 5 1.78 25 25 :
| 13 250 5 1.78 25 25 |
3 14 250 5 1.78 25 25 '

—-"
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Table 6 (Cont) Hydrogen Bas Generator - Temperature Qualification Test Data
Maximum Burn Max {mum Total Gas Flow Burning
F‘ i No. Pressure Time Tenperature Volume Rate Rate
: (MPa) (sec) (°c) (11ters) (1/sec) (mm/sec)
'- | 1 17.89 NA NA NA 18.1 NA
f' ‘ 2 11.22 7.2 153.3 175.2 21.5 0.44
' 3 5.84 7.2 88.9 180.7 24,2 0.50
i 4 6.27 7.2 100 184.3 24.0 0.45
5 6.12 7.4 NA 176.1 22.8 0.47
'l 6 5.17 10.0 1121 188.8 18.7 0.32
! 7 4.44 7.7 NA 193,7 21.7 0.39
8 3.70 8.4 NA 190.7 19.8 0.38
9 9.48 4.7 226.7 189.1 43.0 0.54
10 6.64 5.0 NA 191.4 35.8 0.52
n 7.32 4.8 NA 192.4 38.8 0.50
s 12 7.88 5.8 77.8 193.0 33.9 0.45
b
- 13 5.06 6.3 NA 188.2 26.3 0.39
; 14 4.68 7.0 NA 191.7 24.6 0.37
34
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